
Traceability and Concurrent
Fairness in Petri Nets

Joanna Jółkowska & Edward Ochmański

Nicolaus Copernicus University, Toruń, Poland

DNTTT’08 • Cremona • 9-11 October 2008

Transition system

Transition system – triple S=(A,Q,q0)

� A – finite set of actions

� Q – countable set of states

2

� Q – countable set of states
� state q – partial function q:A→Q

� extension q:A*→Q q(uv)=q(u)(v)

� q0 – initial state

Given a transition system S=(A,Q,q0)

� computation of S:

– any sequence a a a … s.t. (∀∀∀∀i>0) q (a)=q

Sequential behaviour
of transition systems

3

– any sequence a1a2a3… s.t. (∀∀∀∀i>0) qi-1(ai)=qi

� behaviour (or language) of S:

– set of all computations L∞∞∞∞(S)=L(S) ∪∪∪∪Lωωωω(S),

where L(S) – finite computations

Lωωωω(S) – infinite computations

Petri nets

� Elementary nets
(capacity=1)

� Place/transistion nets
(capacity=∞) p

a

p
a

4

(capacity=∞)

� Inhibitor nets
(a enabled if p empty)

� Reset nets
(a cleans the place p)

� Pure net =
net without self-loops

p
a

p
a

p

a

INDEPENDENT ACTIONS

Part I

5

Independency induced
by a system

S=(A,Q,q0) – transition system; state q∈Q;

actions a,b∈A are:

locally independent in q aI b q(ab)=q(ba)

6

locally independent in q aIqb q(ab)=q(ba)

locally dependent in q aDqb q(ab)≠q(ba)

locally concurrent in q a||qb (∃q′∈Q) q(ab)=q(ba)=q′

independent in S aISb (∀q∈Q) aIqb

dependent in S aDSb (∃q∈Q) aDqb

Local independency
– examples

7

� Locally independent
but not concurrent

� Locally independent
and concurrent

a b a b

Local dependency
– examples

p
ba a b

8

� Dependent in M(p)=0:
- Mab, but not Mba

� Concurrent in M(p)>0:
- Mab and Mba

p

� Dependent in M(p)=0:
Mab i Mba, but Mab≠Mba

Independency induced
by a language

L⊆A* - prefix-closed language

a,b∈A* - letters (actions)

I – independency induced by L:

9

IL – independency induced by L:

aILb iff (∀u,v∈A*) uabv∈L ⇔ ubav∈L

ab and ba are syntactically equivalent

Independency induced by
a language – examples

� L1={abc,bac} aIb

10

� L2={ab} aDb
(since ab∈L and ba∉L)

� L3={abc,bad} aDb
(since abc∈L and bac∉L)

Comparison of two kinds
of independencies

� For any transition system S=(A,Q,q0):

IS ⊆IL(S)
� and the inclusion may be strict:

11

� and the inclusion may be strict:

a b

b

a

L(S)=(a∪b)* IL={(a,b)}

S:
IS=∅

Diamond property

(∀q) (∀a,b) q(ab)=q’ ∧ q(ba)=q” ⇒ q’=q”

� Elementary, p/t,
inhibitor nets

23a b

12

inhibitor nets
have diamond
property

� Reset nets have
not diamond
property

a b 12

13

33

23a

a

b

b

b

12

1

∅23

3

a

a
ba b

When IS =IL(S) ?

� Theorem: If a transition system S is
diamond, then independencies induced
by the system S and the language L(S)
coincide:

13

coincide:

IS =IL(S)
� Corollary: The equality holds in

elementary nets, p/t nets and inhibitor nets.

� Remark: It does not hold in reset nets.

Computing independency

The problem „Are two actions dependent?” is

� decidable

14

� undecidable
for inhibitor and reset nets.

� decidable
for elementary and place/transition nets.

Some known decision problems

Coverability problem

Net N, state M → „Is there a
reachable state M’ such that M’≥M?”

Decidable
for p/t nets

15

Reachability problem

Net N, state M → „Is M reachable
in N?”

Place emptiness problem

Net N, place p → „Is there a
reachable state M such that M(p)=0?”

Undecidable
for reset nets
and
inhibitor nets

Decidability of dependency
in place/transition nets

Problem

Net N, state M, place p → “Is there a reachable
state M’ such that M’≥M and M’(p)=0?”

16

is decidable for p/t nets.

Problem

Net N, actions a,b → “Are a,b dependent?”

is decidable for p/t nets.

Undecidability of dependency
in inhibitor and reset nets

Place emptiness
undecidable

Dependency
undecidable

17

a b

N
N′

p

A state with empty p
is reachable in N

iff
actions a, b

are dependent in N’

TRACEABILITY

Part II

18

From sequential to
concurrent behaviour

Transition system S=(A,Q,q0), behaviour L
∞∞∞∞(S)

� independency: aISb iff (∀∀∀∀q,q’) q(ab)=q’ ⇔⇔⇔⇔ q(ba)=q’

� dependency: aDb iff non aISb

19

Equivalence of computations u,v∈∈∈∈L∞∞∞∞(S):

u≈v iff (∀∀∀∀a,b∈∈∈∈A) aDb ⇒ πa,b(u)=πa,b(v)

Concurrent behaviour of S :
set of traces (processes) [L∞∞∞∞(S)]=T∞∞∞∞(S)

Trace (process):
set of equivalent computations [u]={v∈∈∈∈L∞∞∞∞(S); u≈v}

Traceability

Transition system S is traceable iff

(∀a,b∈A) ((∃q∈Q) a||qb) ⇒ aISb

20

(∀a,b∈A) ((∃q∈Q) a||qb) ⇒ aISb

Transition system S is not traceable iff

(∃a,b∈A) ((∃q∈Q) a||qb) ∧ ((∃q′∈Q) aDq′b)

Traceability – motivations

a b

aDb because aDMb for a state M=[0]

21

Trace [aaab]: a baa

a

b

aa
True behaviour [aaab]:

Traceability – examples

a b

b

c

145

ba

22

Traceable net: aIb

a b

aNot traceable net:

aD[0]b and a||[1]b

13 2455

235

ba

abc

Decidability of traceability
for place/transition nets

Problem

Net N, actions a,b → “Is there a reachable
state M such that a||Mb?”

23

M

is decidable for place/transition nets.

Problem

Net N → “Is the net traceable?”

is decidable for place/transition nets.

+ decidability of dependency

Undecidability of traceability
for inhibitor and reset nets

Place emptiness
is undecidable

Traceability
is undecidable

24

x
y

N N′′′′

z
p

z1

z2

If M0(p)≠0, then

A state M with M(p)=0 is reachable in N
iff

actions x,y are locally concurrent
(and dependent) in N’

iff
N’ is not traceable

CONCURRENT FAIRNESS

Part III

25

Ethics of sequential computations

An infinite computation w∈Lω(S) is:

� just iff any action permanently enabled in w
occurs infinitely often in w

fair iff any action infinitely often enabled in w

26

� fair iff any action infinitely often enabled in w
occurs infinitely often in w

� superfair iff any action live in w
occurs infinitely often in w

For finite computations w∈L (S) all three notions coincide:

� w is just iff w is fair iff w is super fair
iff w is non-extendable

Sequential fairness hierarchy

a b c

d

27

SFair ⊂⊂⊂⊂ Fair ⊂⊂⊂⊂ Just

d

(abadabc)ωωωω (abc)ωωωω ab (acb)ωωωω

∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈

Ethics of concurrent processes

An infinite process τ∈Tω(S) is:

� universally just iff any computation w∈τ is just

� existentially just iff there is a just computation w∈τ

28

� existentially just iff there is a just computation w∈τ

� universally fair iff any computation w∈τ is fair

� existentially fair iff there is a fair computation w∈τ

� universally superfair iff any computation w∈τ is
superfair

� existentially superfair iff there is a superfair

computation w∈τ

Process fairness hierarchy

eSFAIR ⊆⊆⊆⊆ eFAIR ⊆⊆⊆⊆ eJUST

29

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

uSFAIR ⊆⊆⊆⊆ uFAIR ⊆⊆⊆⊆ uJUST

Always eSFAIR = uSFAIR

In arbitrary transition system

eSFAIR = uSFAIR

30

eSFAIR ⊆⊆⊆⊆ eFAIR ⊆⊆⊆⊆ eJUST

= ⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

uSFAIR ⊆⊆⊆⊆ uFAIR ⊆⊆⊆⊆ uJUST

eFAIR ⊆⊆⊆⊆ eJUST

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

Process fairness hierarchy

31

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

SFAIR ⊆⊆⊆⊆ uFAIR ⊆⊆⊆⊆ uJUST

Question: Are the inclusions proper?

Strict inclusion
SFAIR ⊂⊂⊂⊂ uFAIR

c

a

x y

32

The process [(xbxay)ωωωω] is universally fair,

but not superfair

c

b

x y

eFAIR ⊆⊆⊆⊆ eJUST

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

Process fairness hierarchy

33

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

SFAIR ⊂⊂⊂⊂ uFAIR ⊆⊆⊆⊆ uJUST

Strict inclusion
uFAIR ⊂⊂⊂⊂ eFAIR

a b c

34

The process [(abc)ωωωω]=[ab (acb)ωωωω]
is existentially fair,

but not universally fair

d

eFAIR ⊆⊆⊆⊆ eJUST

⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

Process fairness hierarchy

35

⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

SFAIR ⊂⊂⊂⊂ uFAIR ⊆⊆⊆⊆ uJUST

Strict inclusions: eFAIR ⊂⊂⊂⊂ eJUST

and uFAIR ⊂⊂⊂⊂ uJUST

a

c

36

The process [(ab)ωωωω] is eJUST, but not eFAIR

and uJUST, but not uFAIR

b

c

eFAIR ⊂⊂⊂⊂ eJUST

⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

Process fairness hierarchy

37

⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

SFAIR ⊂⊂⊂⊂ uFAIR ⊂⊂⊂⊂ uJUST

Last question:
Is eJUST equal to uJUST or not?

Elementary and pure p/t-nets:

eJUST = uJUST

In elementary and pure p/t-nets

any existentially JUST process is universally JUST

38

eFAIR ⊂⊂⊂⊂ eJUST

⊂⊂ ⊂⊂ =

SFAIR ⊂⊂⊂⊂ uFAIR ⊂⊂⊂⊂ uJUST

P/t-nets with self-loops

The inclusion uJUST ⊂⊂⊂⊂ eJUST is proper

b

c

2

1

145

ba

d

39

3

a

d

b

4 5

13 2455

235

ba

ab

d

d

c

The process [(abc)ω]=[(bac)ω] is
eJUST but not uJUST, because (abc)ω

is just, and (bac)ω is not just

The case graph shows that aIb,
thus the computations (abc)ω

and (bac)ω are equivalent

eFAIR ⊂⊂⊂⊂ eJUST

⊂⊂ ⊂⊂ ⊂⊂ ⊂⊂

Strict hierarchy
in general p/t-nets

40

eFAIR and uJUST are incomparable
⊂⊂ ⊂⊂ ⊂⊂ ⊂⊂

SFAIR ⊂⊂⊂⊂ uFAIR ⊂⊂⊂⊂ uJUST

An infinite process τ ∈Tω(S) is:

� ηηηη-just iff any action a∈A either occurs infinitely

often in τ or is not permanently enabled in τ after

any finite prefix of τ

Non-interleaving ethics

41

any finite prefix of τ

� ηηηη-fair iff any action a∈A either occurs infinitely

often in τ or is nowhere enabled in τ after some

finite prefix of τ

� ηηηη-super fair iff any action a∈A either occurs

infinitely often in τ or is dead in S after some finite

prefix of τ

In arbitrary concurrent system:

=

ηJUST

η-classes in our hierarchy

42

eFAIR ⊆⊆⊆⊆ eJUST

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

SFAIR ⊆⊆⊆⊆ uFAIR ⊆⊆⊆⊆ uJUST

=

ηFAIR

==

ηSFAIR

Publications

� E. Ochmański, J. Pieckowska: On Ethics of Mazurkiewicz
Traces. Fundamenta Informaticae 80(1-3), pp. 259-272.
IOS Press 2007.

43

� J. Jółkowska, E. Ochmański: On Trace-Expressible
Behaviour of Petri Nets. Fundamenta Informaticae 85(1-4),
pp. 281-295. IOS Press 2008.

� J. Jółkowska: Ethics of Petri Net Processes in the Light of
Trace Theory (in Polish). PhD Thesis, Toruń/Warszawa,
2008.

44

the end

