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Transition system

Transition system – triple S=(A,Q,q0)

� A – finite set of actions

� Q – countable set of states
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� Q – countable set of states
� state q – partial function q:A→Q

� extension q:A*→Q q(uv)=q(u)(v)

� q0 – initial state



Given a transition system S=(A,Q,q0) 

� computation of S:

– any sequence a a a … s.t. (∀∀∀∀i>0) q (a )=q

Sequential behaviour
of transition systems
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– any sequence a1a2a3… s.t. (∀∀∀∀i>0) qi-1(ai)=qi

� behaviour (or language) of S:

– set of all computations L∞∞∞∞(S)=L(S) ∪∪∪∪Lωωωω(S),

where L(S) – finite computations

Lωωωω(S) – infinite computations



Petri nets

� Elementary nets 
(capacity=1)

� Place/transistion nets 
(capacity=∞) p

a

p
a
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(capacity=∞)

� Inhibitor nets
(a enabled if p empty)

� Reset nets 
(a cleans the place p)

� Pure net = 
net without self-loops

p
a

p
a

p

a



INDEPENDENT ACTIONS

Part I
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Independency induced 
by a system

S=(A,Q,q0) – transition system;  state q∈Q;

actions a,b∈A are:

locally independent in q aI b q(ab)=q(ba)
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locally independent in q aIqb q(ab)=q(ba)

locally dependent in q aDqb q(ab)≠q(ba)

locally concurrent in q a||qb (∃q′∈Q) q(ab)=q(ba)=q′

independent in S aISb (∀q∈Q) aIqb

dependent in S aDSb (∃q∈Q) aDqb



Local independency 
– examples

7

� Locally independent 
but not concurrent

� Locally independent 
and concurrent

a b a b



Local dependency 
– examples

p
ba a b
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� Dependent in M(p)=0: 
- Mab, but not Mba

� Concurrent in M(p)>0:
- Mab and Mba

p

� Dependent in M(p)=0: 
Mab i Mba, but Mab≠Mba



Independency induced 
by a language

L⊆A* - prefix-closed language

a,b∈A* - letters (actions)

I – independency induced by L:

9

IL – independency induced by L:

aILb iff (∀u,v∈A*) uabv∈L ⇔ ubav∈L

ab and ba are syntactically equivalent



Independency induced by 
a language – examples

� L1={abc,bac} aIb
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� L2={ab} aDb
(since ab∈L and ba∉L)

� L3={abc,bad} aDb
(since abc∈L and bac∉L)



Comparison of two kinds 
of independencies 

� For any transition system S=(A,Q,q0):

IS ⊆IL(S)
� and the inclusion may be strict:
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� and the inclusion may be strict:

a b

b

a

L(S)=(a∪b)*              IL={(a,b)}

S:
IS=∅



Diamond property

(∀q) (∀a,b) q(ab)=q’ ∧ q(ba)=q” ⇒ q’=q”

� Elementary, p/t, 
inhibitor nets 

23a b
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inhibitor nets 
have diamond 
property

� Reset nets have 
not diamond 
property

a b 12

13

33

23a

a

b

b

b

12

1

∅23

3

a

a
ba b



When IS =IL(S) ?

� Theorem: If a transition system S is 
diamond, then independencies induced 
by the system S and the language L(S) 
coincide:
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coincide:

IS =IL(S)
� Corollary: The equality holds in 

elementary nets, p/t nets and inhibitor nets. 

� Remark: It does not hold in reset nets.



Computing independency

The problem „Are two actions dependent?” is

� decidable
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� undecidable
for inhibitor and reset nets.

� decidable
for elementary and place/transition nets.



Some known decision problems

Coverability problem

Net N, state M → „Is there a 
reachable state M’ such that M’≥M?”

Decidable 
for p/t nets
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Reachability problem

Net N, state M → „Is M reachable 
in N?”

Place emptiness problem

Net N, place p → „Is there a 
reachable state M such that M(p)=0?”

Undecidable 
for reset nets 
and
inhibitor nets



Decidability of dependency 
in place/transition nets

Problem

Net N, state M, place p → “Is there a reachable 
state M’ such that M’≥M and M’(p)=0?” 
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is decidable for p/t nets.

Problem

Net N, actions a,b → “Are a,b dependent?” 

is decidable for p/t nets.



Undecidability of dependency 
in inhibitor and reset nets

Place emptiness
undecidable

Dependency
undecidable
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a b

N
N′

p

A state with empty p
is reachable in N

iff
actions a, b 

are dependent in N’



TRACEABILITY

Part II
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From sequential to 
concurrent behaviour 

Transition system S=(A,Q,q0), behaviour L
∞∞∞∞(S)

� independency: aISb  iff (∀∀∀∀q,q’ ) q(ab)=q’ ⇔⇔⇔⇔ q(ba)=q’

� dependency:  aDb  iff  non aISb 
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Equivalence of computations u,v∈∈∈∈L∞∞∞∞(S):

u≈v   iff   (∀∀∀∀a,b∈∈∈∈A) aDb ⇒ πa,b(u)=πa,b(v)

Concurrent behaviour of S :
set of traces (processes) [L∞∞∞∞(S)]=T∞∞∞∞(S)

Trace (process): 
set of equivalent computations [u]={v∈∈∈∈L∞∞∞∞(S);  u≈v}



Traceability 

Transition system S is traceable iff  

(∀a,b∈A) ((∃q∈Q) a||qb ) ⇒ aISb
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(∀a,b∈A) ((∃q∈Q) a||qb ) ⇒ aISb

Transition system S is not traceable iff

(∃a,b∈A) ((∃q∈Q) a||qb) ∧ ((∃q′∈Q) aDq′b)



Traceability – motivations

a b

aDb because aDMb for a state M=[0]

21

Trace [aaab]: a baa

a

b

aa
True behaviour [aaab]:



Traceability – examples

a b

b

c

145

ba
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Traceable net: aIb

a b

aNot traceable net:

aD[0]b and a||[1]b

13 2455

235

ba

abc



Decidability of traceability 
for place/transition nets

Problem

Net N, actions a,b → “Is there a reachable 
state M such that a||Mb?” 
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M

is decidable for place/transition nets.

Problem

Net N → “Is the net traceable?” 

is decidable for place/transition nets.

+ decidability of dependency



Undecidability of traceability
for inhibitor and reset nets 

Place emptiness
is undecidable

Traceability
is undecidable
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x
y

N N′′′′

z
p

z1

z2

If M0(p)≠0, then

A state M with M(p)=0 is reachable in N 
iff

actions x,y are locally concurrent 
(and dependent) in N’

iff
N’ is not traceable



CONCURRENT FAIRNESS

Part III
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Ethics of sequential computations

An infinite computation w∈Lω(S) is:

� just iff any action permanently enabled in w
occurs infinitely often in w

fair iff any action infinitely often enabled in w
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� fair iff any action infinitely often enabled in w
occurs infinitely often in w

� superfair iff any action live in w
occurs infinitely often in w

For finite computations w∈L (S) all three notions coincide:

� w is just iff w is fair iff w is super fair  
iff w is non-extendable



Sequential fairness hierarchy

a b c

d
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SFair    ⊂⊂⊂⊂ Fair    ⊂⊂⊂⊂ Just

d

(abadabc)ωωωω (abc)ωωωω ab (acb)ωωωω

∈∈ ∈∈ ∈∈ ∈∈ ∈∈ ∈∈



Ethics of concurrent processes

An infinite process τ∈Tω(S) is:

� universally just  iff  any computation w∈τ is just

� existentially just iff  there is a just computation w∈τ

28

� existentially just iff  there is a just computation w∈τ

� universally fair  iff any computation w∈τ is fair

� existentially fair iff  there is a fair computation w∈τ

� universally superfair iff any computation w∈τ is 
superfair

� existentially superfair iff  there is a superfair 

computation w∈τ



Process fairness hierarchy

eSFAIR    ⊆⊆⊆⊆ eFAIR    ⊆⊆⊆⊆ eJUST
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⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

uSFAIR    ⊆⊆⊆⊆ uFAIR    ⊆⊆⊆⊆ uJUST



Always  eSFAIR = uSFAIR

In arbitrary transition system 

eSFAIR = uSFAIR
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eSFAIR    ⊆⊆⊆⊆ eFAIR    ⊆⊆⊆⊆ eJUST

= ⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

uSFAIR    ⊆⊆⊆⊆ uFAIR    ⊆⊆⊆⊆ uJUST



eFAIR    ⊆⊆⊆⊆ eJUST

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

Process fairness hierarchy
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⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

SFAIR    ⊆⊆⊆⊆ uFAIR    ⊆⊆⊆⊆ uJUST

Question: Are the inclusions proper?



Strict inclusion 
SFAIR ⊂⊂⊂⊂ uFAIR

c

a

x y
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The process [(xbxay)ωωωω] is universally fair, 

but not superfair

c

b

x y



eFAIR    ⊆⊆⊆⊆ eJUST

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

Process fairness hierarchy
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⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

SFAIR    ⊂⊂⊂⊂ uFAIR    ⊆⊆⊆⊆ uJUST



Strict inclusion 
uFAIR ⊂⊂⊂⊂ eFAIR

a b c
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The process [(abc)ωωωω]=[ab (acb)ωωωω] 
is existentially fair, 

but not universally fair

d



eFAIR    ⊆⊆⊆⊆ eJUST

⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

Process fairness hierarchy
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⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

SFAIR    ⊂⊂⊂⊂ uFAIR    ⊆⊆⊆⊆ uJUST



Strict inclusions: eFAIR ⊂⊂⊂⊂ eJUST

and uFAIR ⊂⊂⊂⊂ uJUST

a

c
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The process [(ab)ωωωω] is eJUST, but not eFAIR

and uJUST, but not uFAIR

b

c



eFAIR    ⊂⊂⊂⊂ eJUST

⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

Process fairness hierarchy
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⊂⊂ ⊂⊂ ⊆⊆ ⊆⊆

SFAIR    ⊂⊂⊂⊂ uFAIR    ⊂⊂⊂⊂ uJUST

Last question:
Is eJUST equal to uJUST or not?



Elementary and pure p/t-nets: 

eJUST = uJUST

In elementary and pure p/t-nets

any existentially JUST process is universally JUST
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eFAIR    ⊂⊂⊂⊂ eJUST

⊂⊂ ⊂⊂ =

SFAIR    ⊂⊂⊂⊂ uFAIR    ⊂⊂⊂⊂ uJUST



P/t-nets with self-loops

The inclusion uJUST ⊂⊂⊂⊂ eJUST is proper

b

c

2

1

145

ba

d
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3

a

d

b

4 5

13 2455

235

ba

ab

d

d

c

The process [(abc)ω]=[(bac)ω] is 
eJUST but not uJUST, because (abc)ω

is just, and (bac)ω is not just

The case graph shows that aIb, 
thus the computations (abc)ω

and (bac)ω are equivalent



eFAIR    ⊂⊂⊂⊂ eJUST

⊂⊂ ⊂⊂ ⊂⊂ ⊂⊂

Strict hierarchy 
in general p/t-nets
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eFAIR and uJUST are incomparable
⊂⊂ ⊂⊂ ⊂⊂ ⊂⊂

SFAIR    ⊂⊂⊂⊂ uFAIR    ⊂⊂⊂⊂ uJUST



An infinite process τ ∈Tω(S) is:

� ηηηη-just iff any action a∈A either occurs infinitely 

often in τ or is not permanently enabled in τ after 

any finite prefix of τ

Non-interleaving ethics
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any finite prefix of τ

� ηηηη-fair iff any action a∈A either occurs infinitely 

often in τ or is nowhere enabled in τ after some 

finite prefix of τ

� ηηηη-super fair iff any action a∈A either occurs 

infinitely often in τ or is dead in S after some finite 

prefix of τ



In arbitrary concurrent system:

=

ηJUST

η-classes in our hierarchy
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eFAIR    ⊆⊆⊆⊆ eJUST

⊆⊆ ⊆⊆ ⊆⊆ ⊆⊆

SFAIR    ⊆⊆⊆⊆ uFAIR    ⊆⊆⊆⊆ uJUST

=

ηFAIR

==

ηSFAIR
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the end


