Traceability and Concurrent
Fairness in Petri Nets

Joanna Jotkowska & Edward Ochmanski
Nicolaus Copernicus University, Torun, Poland

DNTTT'08 « Cremona - 9-11 October 2008

‘.L Transition system

Transition system — triple S=(A,Q,q,)
= A — finite set of actions

= Q — countable set of states

» State g — partial function q:A—Q

= extension q:A*—Q q(uv)=qg(u)(v)
= (, — initial state

Sequential behaviour

+

of transition systems

Given a transition system S=(A,Q,q,)

= computation of S:
— any sequence a;a»as... S.t. (Vi»0) qi.1(a;)=q;

= behaviour (or language) of S:

— set of al
where

computations L=(S)=L(S)uL®(S),
_(S) — finite computations

| 9(S) — infinite computations

i Petri nets

= Elementary nets
(capacity=1)

= Place/transistion nets
(capacity=o)

= Inhibitor nets
(a enabled if p empty)

= Reset nets
(a cleans the place p)

= Pure net =
net without self-loops

+

Part I

INDEPENDENT ACTIONS

Independency induced
i by a system

S=(A,Q,qp) — transition system; state qeQ;
actions a,be A are:

ocally independentinq | alb g(ab)=q(ba)
ocally dependent in g aD b g(ab)=qg(ba)
ocally concurrent in g al|sb | (39’ Q) g(ab)=q(ba)=q’
independent in S alcb (Ve Q) al b
dependent in S aD:b (3geQ) aD b

Local independency
i — examples

A A

a b a b

= Locally independent = Locally independent
but not concurrent and concurrent

Local dependency
i — examples

: \,/
®

= Dependent in M(p)=0:

- Mab, but not Mba = Dependent in M(p)=0:

= Concurrent in M(p)>0: Mab i Mba, but Mab=Mba
- Mab and Mba

Independency induced
i by a language

LcA* - prefix-closed language
a,be A* - letters (actions)

I, —independency induced by L.:

al, b iff (Vu,ve A*) uabvel < ubavel

ab and ba are syntactically equivalent

Independency induced by
i a language — examples

= L,={abc,bac}
| L2={a b}

s L;={abc,bad}

alb

aDb

(since abe L and bagl)

aDb

(since abce L and bacelL)

10

Comparison of two kinds
i of independencies

s For any transition system S=(A,Q,q,):

Is QIL(S)
= and the inclusion may be strict:

S: b
a o/\\‘ IS=@
C{ 30

L(5)=(aub)* I, ={(a,b);

11

‘_L Diamond property

(vq) (Va,b) q(ab)=q" A q(ba)=9" = q'=q"

= Elementary, p/t,
inhibitor nets
have diamond

property

s Reset nets have
not diamond

property

A
%

s

S

PP st

1-T>3

12

When IS =IL(S) ?

+

= Theorem: If a transition system S is
diamond, then independencies induced

by the system S and the language L(S)
coincide:

Is =IL(S)
= Corollary: The equality holds in

elementary nets, p/t nets and inhibitor nets.

= Remark: It does not hold in reset nets.

13

‘_L Computing independency

The problem , Are two actions dependent?” is

= decidable
for elementary and place/transition nets.

= undecidable
for inhibitor and reset nets.

14

i Some known decision problems

Coverability problem

Net N, state M — ,Is there a
reachable state M’ such that M’>M?"

Reachability problem

Net N, state M — ,Is M reachable
in N?”

Place emptiness problem

Net N, place p — ,Is there a
reachable state M such that M(p)=0?"

N

Decidable
for p/t nets

Undecidable
. for reset nets
and

inhibitor nets

15

Decidability of dependency
in place/transition nets

Problem

Net N, state M, place p — “Is there a reachable
state M’ such that M'>M and M'(p)=0?"

is decidable for p/t nets.

A4

Problem \/

Net N, actions a,b — “Are a,b dependent?”

is decidable for p/t nets.

16

Undecidability of dependency
i in inhibitor and reset nets

Place emptiness :> Dependency
undecidable undecidable

———
—_ ~

\ A state with empty p
/ is reachable in N
iff
actions a, b
are dependent in N’

+

Part II

TRACEABILITY

18

From sequential to
i concurrent behaviour

Transition system S=(A,Q,q,), behaviour L*(S)
= independency: alcb iff (Vq,q") q(ab)=q" < q(ba)=q’
= dependency: aDb iff non alcb

Equivalence of computations u,ve L=(S):
u=v iff (va,beA)aDb = Tl,,(u)=TT, (V)

Trace (process):
set of equivalent computations [u]={ve L>(S); u=v}

Concurrent behaviour of S:
set of traces (processes) [L=(S)]=T>(S)

19

‘_L Traceability

Transition system S is traceable iff
(va,beA) ((3qeQ) al|,b) = alsb

Transition system S is not traceable iff
(da,beA) ((39eQ) al[b) A ((3q°€Q) aDyb)

20

‘.L Traceability — motivations

—O— b

aDb because aDyb for a state M=[0]

Trace [aaab]:

a—a—a—>b

d— ada —> a

True behaviour [aaab]: \
b

21

‘.L Traceability — examples

a-’Q——’b

Not traceable net:
aD;y;b and al|p;;b

Traceable net: alb

22

Decidability of traceability
for place/transition nets

Problem

Net N, actions a,b — “Is there a reachable
state M such that a||yb?”

is decidable for place/transition nets.

‘ + decidability of dependency

Problem v
Net N — "“Is the net traceable?”
is decidable for place/transition nets.

23

Undecidability of traceability

i for inhibitor and reset nets

Place emptiness =) Traceability
is undecidable is undecidable

If My(p)=0, then

A state M with M(p)=0 is reachable in N
iff
actions x,y are locally concurrent
(and dependent) in N’
iff
N’ is not traceable

24

+

Part 111

CONCURRENT FAIRNESS

25

Ethics of sequential computations

An infinite computation we L®(S) is:

= just iff any action permanently enabled in w
occurs infinitely often in w

= fair iff any action infinitely often enabled in w
occurs infinitely often in w

= superfair iff any action live in w
occurs infinitely often in w

For finite computations we L(S) all three notions coincide:

= Wisjust iff w isfair iff w is super fair
iff w is non-extendable
26

‘_L Sequential fairness hierarchy

N

SFair C Fair C Just
w w w
(abadabc)® (abc)® ab(acb)®

27

‘_L Ethics of concurrent processes

An infinite process T T®(S) is:

= universally just iff any computation we7T is just

= existentially just iff there is a just computation we T
= universally fair iff any computation we7 is fair

= existentially fair iff there is a fair computation wet

= universally superfair iff any computation weT is
superfair

= existentially superfair iff there is a superfair

computation wet
28

‘_L Process fairness hierarchy

eSFAIR < eFAIR < eJUST
Ul Ul Ul

USFAIR UFAIR uJUST

N
N

29

‘_L Always eSFAIR = uSFAIR

In arbitrary transition system
eSFAIR = uSFAIR

eSFAIR < eFAIR < eJUST
| Ul Ul

USFAIR < UuFAIR < uJUST

30

‘_L Process fairness hierarchy

eFAIR < eJUST
Ul Ul
SFAIR < UuFAIR < uJUST

Question: Are the inclusions proper?

31

Strict inclusion
SFAIR C uFAIR

The process [(xbxay)®] is universally fair,
but not superfair

32

‘_L Process fairness hierarchy

eFAIR < eJUST
Ul Ul
SFAIR < UuFAIR < uJUST

33

Strict inclusion
UFAIR C eFAIR

[a] = O —[o] O —[c]

N

The process [(abc)®]=[ab (acb)®]
IS existentially fair,
but not universally fair

34

‘_L Process fairness hierarchy

eFAIR < eJUST

U Ul
SFAIR < UuFAIR < uJUST

35

Strict inclusions: eFAIR C eJUST
i and uFAIR C uJUST

/@\
(®©—>[c]
\»IEI/

The process [(ab)®] is eJUST, but not eFAIR
and uJUST, but not uFAIR

36

‘_L Process fairness hierarchy

eFAIR < eJUST

U Ul
SFAIR < uFAIR < uJUST

Last question:
Is eJUST equal to uJUST or not?

37

Elementary and pure p/t-nets:
i eJUST = uJUST

In elementary and pure p/t-nets
any existentially JUST process is universally JUST

eFAIR < eJUST
U |l
SFAIR < UuFAIR < uJUST

38

P/t-nets with self-loops

The inclusion uJUST < eJUST is proper

The process [(abc)®]=[(bac)®] is The case graph shows that alb,
eJUST but not uJUST, because (abc)® thus the computations (abc)®
is just, and (bac)® is not just and (bac)?® are equivalent

39

Strict hierarchy
in general p/t-nets

+

eFAIR < eJUST
U - U

~

SFAIR — UuFAIR < UJUST

eFAIR and uJUST are incomparable

40

Non-interleaving ethics

An infinite process T T®(S) is:

= mn-just iff any action acA either occurs infinitely
often in T or is not permanently enabled in T after
any finite prefix of T

= n-fair iff any action ac A either occurs infinitely
often in T or is nowhere enabled in T after some
finite prefix of T

= m-super fair iff any action acA either occurs
infinitely often in T or is dead in S after some finite
prefix of T

41

‘_L n-classes in our hierarchy

In arbitrary concurrent system:
nJUST

I
eFAIR < eJUST
Ul Ul

SFAIR < UuFAIR < uJUST
|l |l

nSFAIR nFAIR

42

i Publications

E. Ochmanski, J. Pieckowska: On Ethics of Mazurkiewicz
Traces. Fundamenta Informaticae 80(1-3), pp. 259-272.
IOS Press 2007.

J. Jotkowska, E. Ochmanski: On Trace-Expressible
Behaviour of Petri Nets. Fundamenta Informaticae 85(1-4),
pp. 281-295. IOS Press 2008.

J. Jotkowska: Ethics of Petri Net Processes in the Light of
Trace Theory (in Polish). PhD Thesis, Torun/Warszawa,
2008.

43

the end

