Traceability and Concurrent Fairness in Petri Nets

#### Joanna Jółkowska & Edward Ochmański

Nicolaus Copernicus University, Toruń, Poland

DNTTT'08 • Cremona • 9-11 October 2008

### **Transition system**

Transition system – triple S=(A,Q,q<sub>0</sub>)
A – finite set of **actions**

- Q countable set of states
  - state q partial function q:A $\rightarrow$ Q
  - extension q:A\* $\rightarrow$ Q q(uv)=q(u)(v)
- q<sub>0</sub> initial state

Sequential behaviour of transition systems

Given a transition system  $S=(A,Q,q_0)$ 

#### • **computation** of S:

- any sequence  $a_1a_2a_3...$  s.t. ( $\forall_{i>0}$ )  $q_{i-1}(a_i)=q_i$ 

- **behaviour** (or language) of S:
  - set of all computations  $L^{\infty}(S)=L(S)\cup L^{\omega}(S)$ , where L(S) - finite computations  $L^{\omega}(S)$  - infinite computations

#### Petri nets

- Elementary nets (capacity=1)
- Place/transistion nets (capacity=∞)
- Inhibitor nets
   (a enabled if p empty)
- Reset nets
   (a cleans the place p)
- Pure net = net without self-loops





## Part I INDEPENDENT ACTIONS

## Independency induced by a system

 $S=(A,Q,q_0)$  – transition system; state  $q \in Q$ ; actions  $a,b \in A$  are:

| locally independent in q | aI <sub>q</sub> b  | q(ab)=q(ba)                             |
|--------------------------|--------------------|-----------------------------------------|
| locally dependent in q   | aD <sub>q</sub> b  | q(ab)≠q(ba)                             |
| locally concurrent in q  | a   <sub>q</sub> b | $(\exists q' \in Q) q(ab) = q(ba) = q'$ |
| independent in S         | aI <sub>s</sub> b  | (∀q∈Q) aI <sub>q</sub> b                |
| dependent in S           | aD <sub>S</sub> b  | (∃q∈Q) aD <sub>q</sub> b                |

## Local independency – examples





- Locally independent but not concurrent
- Locally independent and concurrent





- Dependent in M(p)=0:
  - Mab, but not Mba
- Concurrent in M(p)>0:
  - Mab and Mba



Dependent in M(p)=0:
 Mab i Mba, but Mab≠Mba

Independency induced by a language

L<sub> $\subseteq$ </sub>A<sup>\*</sup> - prefix-closed language a,b∈A<sup>\*</sup> - letters (actions)

 $I_L$  – independency induced by L:

 $aI_Lb$  iff ( $\forall u, v \in A^*$ )  $uabv \in L \Leftrightarrow ubav \in L$ 

ab and ba are syntactically equivalent

Independency induced by a language – examples

•  $L_1 = \{abc, bac\}$  alb

- $L_2 = \{ab\}$  aDb (since  $ab \in L$  and  $ba \notin L$ )
- $L_3 = \{abc, bad\}$  aDb (since  $abc \in L$  and  $bac \notin L$ )

Comparison of two kinds of independencies

• For any transition system  $S=(A,Q,q_0)$ :  $I_S \subseteq I_{L(S)}$ 

and the inclusion may be strict:



 $L(S)=(a\cup b)^* \qquad I_L=\{(a,b)\}$ 

### **Diamond property**

( $\forall$ q) ( $\forall$ a,b) q(ab)=q'  $\land$  q(ba)=q"  $\Rightarrow$  q'=q"

 Elementary, p/t, inhibitor nets have diamond property



 Reset nets have not diamond property

## When $I_S = I_{L(S)}$ ?

Theorem: If a transition system S is diamond, then independencies induced by the system S and the language L(S) coincide:

$$I_{S} = I_{L(S)}$$

- Corollary: The equality holds in elementary nets, p/t nets and inhibitor nets.
- **Remark:** It does not hold in reset nets.

### Computing independency

The problem "Are two actions dependent?" is

#### decidable

for elementary and place/transition nets.

#### undecidable

for inhibitor and reset nets.

#### Some known decision problems

#### Coverability problem

Net N, state  $M \rightarrow$ "Is there a reachable state M' such that M' $\geq$ M?"

Reachability problem

Net N, state M  $\rightarrow$  "Is M reachable in N?"

Place emptiness problem

Net N, place  $p \rightarrow "$ Is there a reachable state M such that M(p)=0?"

Decidable for p/t nets

Undecidable for reset nets and inhibitor nets Decidability of dependency in place/transition nets

#### Problem

Net N, state M, place  $p \rightarrow$  "Is there a reachable state M' such that M' $\geq$ M and M'(p)=0?"

is **decidable** for p/t nets.

#### Problem

Net N, actions a,b  $\rightarrow$  "Are a,b dependent?"

is **decidable** for p/t nets.

### Undecidability of dependency in inhibitor and reset nets

Place emptinessDependencyundecidableundecidable



A state with empty *p* is reachable in N iff actions a, b are dependent in N'



#### Part II TRACEABILITY

## From sequential to concurrent behaviour

Transition system  $S=(A,Q,q_0)$ , behaviour  $L^{\infty}(S)$ 

- independency:  $aI_Sb$  iff  $(\forall q,q') q(ab)=q' \Leftrightarrow q(ba)=q'$
- dependency: aDb iff non aI<sub>s</sub>b

 $\begin{array}{l} \textbf{Equivalence} \text{ of computations } u, v \in L^{\infty}(S): \\ u \approx v \quad \text{iff} \quad (\forall a, b \in A) \text{ aDb} \Rightarrow \pi_{a,b}(u) = \pi_{a,b}(v) \end{array}$ 

#### Trace (process):

set of equivalent computations  $[u] = \{v \in L^{\infty}(S); u \approx v\}$ 

#### **Concurrent behaviour** of S : set of traces (processes) $[L^{\infty}(S)]=T^{\infty}(S)$

## Traceability

#### Transition system S is **traceable** iff $(\forall a, b \in A) ((\exists q \in Q) a ||_q b) \Rightarrow a I_S b$

Transition system S is **not traceable** iff  $(\exists a,b\in A) ((\exists q\in Q) a||_qb) \land ((\exists q'\in Q) aD_{q'}b)$ 



#### Traceability – examples



Not traceable net:  $aD_{[0]}b$  and  $a||_{[1]}b$ 



Decidability of traceability for place/transition nets

#### Problem

Net N, actions a,b  $\rightarrow$  "Is there a reachable state M such that a||<sub>M</sub>b?"

is **decidable** for place/transition nets.

+ decidability of dependency

#### Problem

Net N  $\rightarrow$  "Is the net traceable?"

is **decidable** for place/transition nets.

## Undecidability of traceability for inhibitor and reset nets

Place emptiness is undecidable



## Traceability is undecidable



If  $M_0(p) \neq 0$ , then

A state M with M(p)=0 is reachable in N iff actions x,y are locally concurrent (and dependent) in N' iff N' is not traceable



## Part III CONCURRENT FAIRNESS

#### Ethics of sequential computations

An infinite computation  $w \in L^{\omega}(S)$  is:

- just iff any action permanently enabled in w occurs infinitely often in w
- fair iff any action infinitely often enabled in w occurs infinitely often in w
- superfair iff any action live in w occurs infinitely often in w

For finite computations  $w \in L(S)$  all three notions coincide:

 w is just iff w is fair iff w is super fair iff w is non-extendable

#### Sequential fairness hierarchy



SFair  $\subset$  Fair  $\subset$  Just  $\Psi$   $\Psi$   $\Psi$ (abadabc)<sup> $\omega$ </sup> (abc)<sup> $\omega$ </sup> ab(acb)<sup> $\omega$ </sup>

### Ethics of concurrent processes

An infinite process  $\tau \in T^{\omega}(S)$  is:

- **universally just** iff any computation  $w \in \tau$  is just
- **existentially just** iff there is a just computation  $w \in \tau$
- **universally fair** iff any computation  $w \in \tau$  is fair
- **existentially fair** iff there is a fair computation  $w \in \tau$
- **universally superfair** iff any computation  $w \in \tau$  is superfair
- existentially superfair iff there is a superfair computation we  $\tau$

### Process fairness hierarchy

# eSFAIR $\subseteq$ eFAIR $\subseteq$ eJUSTUIUIUIUIuSFAIR $\subseteq$ uFAIR $\subseteq$ uJUST

### Always eSFAIR = uSFAIR

In arbitrary transition system eSFAIR = uSFAIR

 $\begin{array}{cccc} eSFAIR & \subseteq & eFAIR & \subseteq & eJUST \\ & & & & & & \\ & & & & & & \\ uSFAIR & \subseteq & uFAIR & \subseteq & uJUST \end{array}$ 

### Process fairness hierarchy

# $\begin{array}{ccc} eFAIR & \subseteq & eJUST \\ U & & U \\ SFAIR & \subseteq & uFAIR & \subseteq & uJUST \end{array}$

**Question:** Are the inclusions proper?

## Strict inclusion SFAIR $\subset$ uFAIR



The process [(xbxay)<sup>ω</sup>] is universally fair, but not superfair

#### Process fairness hierarchy

# $\begin{array}{ccc} eFAIR & \subseteq & eJUST \\ & & & \\ UI & & & \\ SFAIR & \subset & uFAIR & \subseteq & uJUST \end{array}$

## Strict inclusion $uFAIR \subset eFAIR$



The process [(abc)<sup>ω</sup>]=[ab(acb)<sup>ω</sup>] is existentially fair, but not universally fair

### Process fairness hierarchy

# $\begin{array}{ccc} eFAIR & \subseteq & eJUST \\ & U & & U \\ SFAIR & \subset & uFAIR & \subseteq & uJUST \end{array}$

### Strict inclusions: $eFAIR \subset eJUST$ and $uFAIR \subset uJUST$



#### The process $[(ab)^{\omega}]$ is eJUST, but not eFAIR and uJUST, but not uFAIR

### Process fairness hierarchy

## $\begin{array}{ccc} eFAIR & \subset & eJUST \\ U & & U \\ SFAIR & \subset & uFAIR & \subset & uJUST \end{array}$

Last question: Is eJUST equal to uJUST or not?

## Elementary and pure p/t-nets: eJUST = uJUST

#### In elementary and pure p/t-nets

any existentially JUST process is universally JUST

# $\begin{array}{ccc} eFAIR & \subset & eJUST \\ U & & \parallel \\ SFAIR & \subset & uFAIR & \subset & uJUST \end{array}$

#### P/t-nets with self-loops

#### The inclusion uJUST $\subset$ eJUST is proper



The process  $[(abc)^{\omega}] = [(bac)^{\omega}]$  is eJUST but not uJUST, because  $(abc)^{\omega}$ is just, and  $(bac)^{\omega}$  is not just



The case graph shows that aIb, thus the computations  $(abc)^{\omega}$  and  $(bac)^{\omega}$  are equivalent

## Strict hierarchy in general p/t-nets

# $\begin{array}{ccc} eFAIR \ \subset \ eJUST \\ U & \ddots & U \\ SFAIR \ \subset \ uFAIR \ \subset \ uJUST \end{array}$

eFAIR and uJUST are incomparable

### Non-interleaving ethics

An infinite process  $\tau \in T^{\omega}(S)$  is:

- η-just iff any action a∈A either occurs infinitely often in τ or is not permanently enabled in τ after any finite prefix of τ
- η-fair iff any action a ∈ A either occurs infinitely often in τ or is nowhere enabled in τ after some finite prefix of τ
- η-super fair iff any action a∈A either occurs infinitely often in τ or is dead in S after some finite prefix of τ

### $\eta$ -classes in our hierarchy

In arbitrary concurrent system: ηJUST  $eFAIR \subset eJUST$ IJ  $\subseteq$  uFAIR  $\subseteq$  uJUST SFAIR н П ηSFAIR ηFAIR

#### **Publications**

- E. Ochmański, J. Pieckowska: On Ethics of Mazurkiewicz Traces. Fundamenta Informaticae 80(1-3), pp. 259-272. IOS Press 2007.
- J. Jółkowska, E. Ochmański: On Trace-Expressible Behaviour of Petri Nets. Fundamenta Informaticae 85(1-4), pp. 281-295. IOS Press 2008.
- J. Jółkowska: Ethics of Petri Net Processes in the Light of Trace Theory (in Polish). PhD Thesis, Toruń/Warszawa, 2008.



### the end